Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Vet Entomol ; 38(2): 179-188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38296831

RESUMEN

Fleas in the genus Ctenocephalides serve as biological vectors or intermediate hosts of microorganisms such as bacteria, rickettsia, protozoa and helminths. Ctenocephalides felis has a worldwide distribution, while C. orientis has long been considered as a subspecies of C. felis in Asia. To help the morphological recognition of these two species and further explore their differences, we used the geometric morphometric approach applied to the head. Both sexes were examined. Five anatomical landmarks of the head were used, and to capture the curvature of the front head, 10 semilandmarks were added. There was a consistent difference in species classification accuracy when considering landmarks only versus their combination with semilandmarks, suggesting the importance of the curve of the head as a taxonomic signal. Using or not the labels in the reclassification analyses, the head shape allowed by itself almost perfect recognition of the two species, in both sexes, even after adjustment for prior probabilities. The same approach disclosed a high level of sexual size and shape dimorphism in both species. The contribution of size variation to the discrimination by shape was much more important between sexes (from 27% to 45%) than between species (from 0.7% to 7.1%). Nevertheless, in our data, size never could represent a way to reliably recognise the sex of an individual, even less its species. Geographical variation in head shape could only be explored for the C. orientis sample. No significant correlation of morphometric variation with geography could be detected, which would be consistent with gene flow between Thai provinces. The geometric morphometric approach of the flea head, when it incorporates head curves, is a promising tool for rapid, economical, and accurate species and sex identification. It is, therefore, a useful tool for future epidemiological and demographic studies.


Asunto(s)
Ctenocephalides , Cabeza , Animales , Femenino , Tailandia , Masculino , Ctenocephalides/anatomía & histología , Ctenocephalides/clasificación , Cabeza/anatomía & histología , Especificidad de la Especie , Caracteres Sexuales , Geografía
2.
Vet Parasitol ; 325: 110092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070383

RESUMEN

Armigeres subalbatus, a mosquito species widely found in Thailand and other Asian countries, serves as a vector for filarial parasites, affecting both humans and animals. However, the surveillance of this vector is complicated because of its morphological similarity to two other species, Armigeres dohami and Armigeres kesseli. To differentiate these morphologically similar species, our study employed both wing geometric morphometrics (GM) and DNA barcoding, offering a comprehensive approach to accurately identify these closely related Armigeres species in Thailand. Our GM analyses based on shape demonstrated significant accuracy in differentiating Armigeres species. Specifically, the outline-based GM method focusing on the 3rd posterior cell exhibited an accuracy rate of 82.61%, closely followed by the landmark-based GM method with 81.54%. Both these GM techniques effectively distinguished Ar. subalbatus from Ar. dohami and Ar. kesseli. Regarding DNA barcoding, our investigation of pairwise intra- and interspecific divergences revealed a "barcoding gap". Furthermore, the results of species confirmation using both species delimitation methods including the automatic barcode gap discovery method (ABGD) and the Multi-rate Poisson tree process (mPTP) were consistent with those of morphological identification, sequence comparisons with the GenBank and Barcode of Life Data System (BOLD) databases, and the neighbor-joining tree construction. These consistent results emphasize the efficacy of DNA barcoding in the precise identification of Armigeres species.


Asunto(s)
Culicidae , Humanos , Animales , Culicidae/genética , Culicidae/parasitología , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/veterinaria , Tailandia , Mosquitos Vectores
3.
Acta Trop ; 250: 107093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103585

RESUMEN

Recent studies have revealed taxonomic signals within the wing cells of certain mosquito species. In our study, wing cell differentiation among mosquito vectors from the Tanaosri mountain range in Thailand was evaluated using the outline-based geometric morphometric (GM) approach. Our focus was on four specific wing cells for GM analysis: the wing contour (external cell), the second submarginal cell (internal cell 1), the first posterior cell (internal cell 2), and the third posterior cell (internal cell 3). Before proceeding with the GM approach, the identity of seven mosquito genera and 21 species was confirmed using molecular techniques. Our validated classification tests demonstrated that the performance of mosquito species classification varies according to genus. Notably, three Aedes species exhibited the highest accuracy for both internal cell 2 and internal cell 3, each registering a score of 93.20 %. In the case of two Mansonia species, the wing contour displayed a remarkable accuracy of 98.57 %. Consequently, we suggest the use of the outline-based GM approach, particularly focusing on the wing contour, for differentiating Mansonia annulifera and Mansonia uniformis. In contrast, the highest accuracy for classifying Culex species was found in internal cell 1, at 75.51 %, highlighting the challenges due to similarities in wing cells within this genus. These findings provide a guideline for future applications of the outline-based GM approach, focusing on wing cells, as an alternative method to classify mosquito vector species.


Asunto(s)
Aedes , Culex , Animales , Mosquitos Vectores , Tailandia , Alas de Animales
4.
Infect Genet Evol ; 112: 105452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257802

RESUMEN

Coquillettidia mosquitoes are important nuisance-biting pests and a vector of brugian filariasis in Thailand. However, comprehensive information about these mosquitoes remains unavailable such as molecular and morphometric differences among species. The lack of vector knowledge on Coquillettidia species could affect future disease control. This study aims to investigate differences in molecular variations based on mitochondrial cytochrome oxidase subunit I (COI) gene and wing geometric traits of three Coquillettidia species, namely Cq. crassipes, Cq. nigrosignata, and Cq. ochracea in Thailand. The results of molecular analyses revealed the differences among three Coquillettidia species. The genetic difference measure based on the Kimura two-parameter model among three Coquillettidia species showed low intraspecific distances (0%-3.05%) and large interspecific distances (10.10%-12.41%). The values of intra- and inter-genetic differences of three Coquillettidia species did not overlap which showed the existence of a barcoding gap indicating the efficiency of the identification based on the COI gene. As with molecular analysis, the landmark-based geometric morphometrics approach based on wing shape analysis indicated three distinct species groups which were supported by the high total performance score of cross-validated classification (97.16%). These results provide the first evidence of taxonomic signal based on molecular and wing geometric differences to support species identification and biological variations of Coquillettidia mosquitoes in Thailand for understanding these rare vector mosquitoes in depth and leading to effective further mosquito control.


Asunto(s)
Culicidae , Filariasis , Infecciones por Nematodos , Animales , Tailandia , Mosquitos Vectores/genética , Culicidae/genética
5.
Insects ; 14(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36835700

RESUMEN

Japanese encephalitis (JE) is a viral infection of the brain caused by the Japanese encephalitis virus, which spreads globally, particularly in 24 countries of Southeast Asia and the Western Pacific region. In Thailand, the primary vectors of JE are Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui of the Cx. vishnui subgroup. The morphologies of three mosquito species are extremely similar, making identification challenging. Thus, geometric morphometrics (GM) and DNA barcoding were applied for species identification. The results of cross-validation reclassification revealed that the GM technique based on wing shape analysis had relatively high potential for distinguishing Cx. pseudovishnui, Cx. tritaeniorhynchus, and Cx. vishnui (total performance = 88.34% of correctly assigned individuals). While the DNA barcoding yielded excellent results in identifying these Culex species based on the DNA barcode gap (average intraspecific genetic distance = 0.78% ± 0.39% and average interspecific genetic distance = 6.14% ± 0.79%). However, in the absence of the required facilities for DNA barcoding, GM techniques can be employed in conjunction with morphological methods to enhance the reliability of species identification. Based on the results of this study, our approach can help guide efforts to identify members of the Cx. vishnui subgroup, which will be useful for the effective vector control of JE in Thailand.

6.
Trop Med Infect Dis ; 7(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36548667

RESUMEN

Plasmodium knowlesi, a malaria parasite that occurs naturally in long-tailed macaques, pig-tailed macaques, and banded leaf monkeys, is currently regarded as the fifth of the human malaria parasites. We aimed to investigate genetic diversity based on the cytochrome c oxidase subunit I (COI) gene, detect Plasmodium parasites, and screen for the voltage-gated sodium channel (VGSC)-mutation-mediated knockdown resistance (kdr) of Anopheles mosquitoes in Ranong province, which is the most P. knowlesi-endemic area in Thailand. One hundred and fourteen Anopheles females belonging to eight species, including An. baimaii (21.05%), An. minimus s.s. (20.17%), An. epiroticus (19.30%), An. jamesii (19.30%), An. maculatus s.s. (13.16%), An. barbirostris A3 (5.26%), An. sawadwongporni (0.88%), and An. aconitus (0.88%), were caught in three geographical regions of Ranong province. None of the Anopheles mosquitoes sampled in this study were infected with Plasmodium parasites. Based on the sequence analysis of COI sequences, An. epiroticus had the highest level of nucleotide diversity (0.012), followed by An. minimus (0.011). In contrast, An. maculatus (0.002) had the lowest level of nucleotide diversity. The Fu's Fs and Tajima's D values of the Anopheles species in Ranong were all negative, except the Tajima's D values of An. minimus (0.077). Screening of VGSC sequences showed no presence of the kdr mutation of Anopheles mosquitoes. Our results could be used to further select effective techniques for controlling Anopheles populations in Thailand's most P. knowlesi-endemic area.

7.
Heliyon ; 8(10): e11261, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36339998

RESUMEN

Anopheles members of the Barbirostris complex are important vectors of malaria in Thailand. However, they are morphologically indistinguishable because they are closely related species. In this study, wing geometric morphometrics (GM) and DNA barcoding based on the cytochrome c oxidase subunit 1 (C O I) gene were applied to differentiate cryptic species of the Barbirostris complex in Thailand. Three cryptic species of the Barbirostris complex, Anopheles dissidens (19.44%), Anopheles saeungae (24.54%), and Anopheles wejchoochotei (56.02%) were initially identified using the multiplex polymerase chain reaction assay. DNA barcoding analyses showed low intraspecific distances (range, 0.27%-0.63%) and high interspecific distances (range, 1.92%-3.68%), consistent with the phylogenetic analyses that showed clear species groups. While wing size and shape analyses based on landmark-based GM indicated differences between three species (p < 0.05). The cross-validated reclassification revealed that the overall efficacy of wing size analysis for species identification of the Barbirostris complex was less than the wing shape analysis (56.43% vs. 74.29% total performance). Therefore, this study's results are guidelines for applying modern techniques to identify members within the Barbirostris complex, which are still difficult to distinguish by morphology-based identification and contribute to further appropriate malaria control.

8.
PLoS One ; 17(9): e0275090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137118

RESUMEN

The correct identification of mosquito species is important for effective mosquito vector control. However, the standard morphological identification of mosquito species based on the available keys is not easy with specimens in the field due to missing or damaged morphological features during mosquito collections, often leading to the misidentification of morphologically indistinguishable. To resolve this problem, we collected mosquito species across Thailand to gather genetic information, and evaluated the DNA barcoding efficacy for mosquito species identification in Thailand. A total of 310 mosquito samples, representing 73 mosquito species, were amplified using mitochondrial cytochrome c oxidase subunit I (COI) primers. The average maximum intraspecific genetic variation of the 73 mosquito species was 1% ranged from 0-5.7%. While, average minimum interspecific genetic variation (the distance to the nearest neighbour) of the 73 mosquito species was 7% ranged from 0.3-12.9%. The identification of success rates based on the "Best Match," "Best Close Match," and "All Species Barcodes" methods were 97.7%, 91.6%, and 81%, respectively. Phylogenetic analyses of Anopheles COI sequences demonstrated a clear separation between almost all species (except for those between An. baimaii and An. dirus), with high bootstrap support values (97%-99%). Furthermore, phylogenetic analyses revealed potential sibling species of An. annularis, An. tessellatus, and An. subpictus in Thailand. Our results indicated that DNA barcoding is an effective molecular approach for the accurate identification of mosquitoes in Thailand.


Asunto(s)
Anopheles , Culicidae , Animales , Anopheles/genética , Culicidae/genética , Código de Barras del ADN Taxonómico/métodos , ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Mosquitos Vectores/genética , Filogenia , Tailandia
9.
Sci Rep ; 12(1): 13236, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918453

RESUMEN

Anopheles (Cellia) dirus Peyton & Harrison and Anopheles baimaii Sallum & Peyton are sibling species within the Dirus complex belonging to the Leucosphyrus group, and have been incriminated as primary vectors of malaria in Thailand. In the present study, DNA barcoding and geometric morphometrics were used to distinguish between An. dirus and An. baimaii in the international border areas, Trat Province, eastern Thailand. Our results revealed that DNA barcoding based on the cytochrome c oxidase subunit I gene could not be used to distinguish An. dirus from An. baimaii. The overlapping values between intra- and interspecific genetic divergence indicated no barcoding gap present for An. dirus and An. baimaii (ranging from 0 to 0.99%). However, the results of the geometric morphometric analysis based on the wing shape clearly distinguished An. dirus and An. baimaii, with 92.42% of specimens assigned to the correct species. We concluded that geometric morphometrics is an effective tool for the correct species identification of these two malaria vectors. Our findings could be used to make entomological surveillance information more accurate, leading to further effective mosquito control planning in Thailand and other countries in Southeast Asia.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Cambodia , ADN , Código de Barras del ADN Taxonómico , Mosquitos Vectores/genética , Tailandia/epidemiología
10.
Insects ; 13(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35323585

RESUMEN

All members of the ant genus Odontomachus Latreille, 1804 are venomous ants. Four species in this genus have been identified from Thailand: Odontomachus latidens Mayr, 1867; O. monticola Emery, 1892; O. rixosus Smith, 1757; and O. simillimus Smith, 1758. The three latter species are available and have been used for an outline morphometric study. They display similar morphology, which makes their distinction very difficult except for highly qualified individuals. A total of 80 worker specimens were studied, exploring the contour shapes of their head and pronotum as possible taxonomic characters. The size of each body part was estimated determining the contour perimeter, the values for which were largely overlapping between O. rixosus and O. simillimus; most O. monticola specimens exhibited a significantly larger size. In contrast to the size, each contour shape of the head or pronotum established O. rixosus as the most distinct species. An exploratory data analysis disclosed the higher taxonomic signal of the head contour relative to the pronotum one. The scores obtained for validated reclassification were much better for the head (99%) than for the pronotum (82%). This study supports outline morphometrics of the head as a promising approach to contribute to the morphological identification of ant species, at least for monomorphic workers.

11.
Insects ; 12(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919376

RESUMEN

Accurate identification of mosquito species is critically important for monitoring and controlling the impact of human diseases they transmit. Here, we investigate four mosquito species: Aedes aegypti, Ae. albopictus, Ae. scutellaris and Verrallina dux that co-occur in tropical and subtropical regions, and whose morphological similarity challenges their accurate identification, a crucial requirement in entomological surveillance programs. Previous publications reveal a clear taxonomic signal embedded in wing cell landmark configuration, as well as in the external contour of the wings. We explored this signal for internal cells of the wings as well, to determine whether internal cells could uniformly provide the same taxonomic information. For each cell to be tentatively assigned to its respective species, i.e., to measure the amount of its taxonomic information, we used the shape of its contour, rather than its size. We show that (i) the taxonomic signal of wing shape is not uniformly spread among internal cells of the wing, and (ii) the amount of taxonomic information of a given cell depends on the species under comparison. This unequal taxonomic signal of internal cells is not related to size, nor to apparent shape complexity. The strong taxonomic signal of some cells ensures that even partly damaged wings can be used to improve species recognition.

12.
Parasit Vectors ; 13(1): 574, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176862

RESUMEN

BACKGROUND: Anopheles sawadwongporni Rattanarithikul & Green, Anopheles maculatus Theobald and Anopheles pseudowillmori (Theobald) of the Anopheles maculatus group (Diptera: Culicidae) are recognized as potential malaria vectors in many countries from the Indian subcontinent through Southeast Asia to Taiwan. A number of malaria vectors in malaria hotspot areas along the Thai-Myanmar border belong to this complex. However, the species distribution and dynamic trends remain understudied in this malaria endemic region. METHODS: Mosquitoes of the Maculatus group were collected using CDC light traps every other week from four villages in Tha Song Yang District, Tak Province, Thailand from January to December 2015. Adult female mosquitoes were morphologically identified on site using taxonomic keys. Molecular species identification was performed by multiplex PCR based on the internal transcribed spacer 2 (ITS2) region of ribosomal DNA (rDNA) and sequencing of the cox1 gene at a DNA barcoding region in a subset of 29 specimens. RESULTS: A total of 1328 An. maculatus (sensu lato) female mosquitoes were captured with An. maculatus, An. sawadwongporni and An. pseudowilmori accounting for 75.2, 22.1 and 2.7% respectively. The field captured mosquitoes of the Maculatus group were most abundant in the wet season and had a preferred distribution in villages at higher elevations. The phylogenetic relationships of 29 cox1 sequences showed a clear-cut separation of the three member species of the Maculatus group, with the An. pseudowillmori cluster being separated from An. sawadwongporni and An. maculatus. CONCLUSIONS: This study provides updated information for the species composition, seasonal dynamics and microgeographical distribution of the Maculatus group in malaria-endemic areas of western Thailand. This information can be used to guide the planning and implementation of mosquito control measures in the pursuance of malaria transmission.


Asunto(s)
Anopheles/clasificación , Malaria/transmisión , Mosquitos Vectores/clasificación , Estaciones del Año , Animales , Anopheles/fisiología , ADN Espaciador Ribosómico/genética , Conducta Alimentaria , Femenino , Humanos , Malaria/epidemiología , Masculino , Filogenia , Planificación Social , Tailandia/epidemiología
13.
PeerJ ; 8: e8597, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117632

RESUMEN

BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as "intermediate forms" based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identification. In previous studies, promising phenotypic identification scores were obtained using morphometrics based on linear measurements (distances, angles, curves) between anatomical features. Such an approach is commonly termed "traditional" morphometrics, as opposed to "modern" morphometrics, which is based on the coordinates of anatomical points. METHODS: Here, we explored the possible improvements that modern methods of morphometrics, including landmark-based and outline-based approaches, could bring to solving the problem of the non-molecular identification of these parasites. F. gigantica and Fasciola intermediate forms suitable for morphometric characterization were selected from Thai strains following their molecular identification. Specimens of F. hepatica were obtained from the Liverpool School of Tropical Medicine (UK). Using these three taxa, we tested the taxonomic signal embedded in traditional linear measurements versus the coordinates of anatomical points (landmark- and outline-based approaches). Various statistical techniques of validated reclassification were used, based on either the shortest Mahalanobis distance, the maximum likelihood, or the artificial neural network method. RESULTS: Our results revealed that both traditional and modern morphometric approaches can help in the morphological identification of Fasciola sp. We showed that the accuracy of the traditional approach could be improved by selecting a subset of characters among the most contributive ones. The influence of size on discrimination by shape was much more important in traditional than in modern analyses. In our study, the modern approach provided different results according to the type of data: satisfactory when using pseudolandmarks (outlines), less satisfactory when using landmarks. The different reclassification methods provided approximately similar scores, with a special mention to the neural network, which allowed improvements in accuracy by combining data from both morphometric approaches. CONCLUSION: We conclude that morphometrics, whether traditional or modern, represent a valuable tool to assist in Fasciola species recognition. The general level of accuracy is comparable among the various methods, but their demands on skills and time differ. Based on the outline method, our study could provide the first description of the shape differences between species, highlighting the more globular contours of the intermediate forms.

14.
Acta Trop ; 192: 66-74, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30710534

RESUMEN

Members of the Maculatus group are important malaria vectors in the border regions of Thailand. However, the role of each species in malaria transmission remains unclear because of their highly similar morphologies, making them difficult to be differentiated. Whereas An. pseudowillmori may be identified by the color pattern of some scales on abdomen and wings, the distinction between An. maculatus and An. sawadwongporni relies on the wings only. Scales are labile structures, as they may be accidentally removed during capture and transportation to the laboratory. To discriminate among the species of this group, we tested the suitability of geometric techniques. Shape variables were used as input for discriminant analyses and validated reclassification. Both landmark- and outline-based geometric techniques disclosed significant differences between the three species. For the delicate An. maculatus - An. sawadwongporni distinction, the outline-based approach appeared as the most promising, with validated reclassification scores reaching 93%, as compared to 77% obtained by landmark data. For An. pseudowillmori, reclassification scores were 100% and 94%, respectively. Geometric morphometrics may provide an alternative and useful complement for discriminating members of the Maculatus group.


Asunto(s)
Anopheles/clasificación , Mosquitos Vectores/clasificación , Animales , Tailandia
15.
Ticks Tick Borne Dis ; 10(2): 495-503, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30501981

RESUMEN

The vectors of scrub typhus are the larval stage of trombiculid mites, termed "chiggers". These vectors are very small - the larvae are approximately 0.2 mm in size - and therefore their morphological identification is difficult. Trombiculid mites are widely distributed across Asia and they can be identified at the genus level by the shape, size and setae/sensilla distribution of their dorsal chitin plate (scutum = shield), while morphological identification at the species level requires more mite characteristics. We recently developed a methodology to ascertain paired matched genotype and morphotype of individual chiggers, based on autofluorescence and brightfield microscopy with subsequent molecular identification using the COI gene (approximately 640bp length). However, based on 20 chigger specimens characterised by paired genotypic and morphological data consisting of the four species [Walchia ewingi with 2 subspecies]: Walchia ewingi lupella (n = 9), W. ewingi ewingi (n = 2), W. alpestris (n = 2), W. kritochaeta (n = 5) and W. minuscuta (n = 2) we found evidence of genetic polymorphism and morphological plasticity within the genus Walchia. The phylogenetic inference of the intra-genus relationships within the Walchia spp., based on COI gene (Blankaartia spp. served as outgroup), delineated the five included species by an average interspecific divergence of mean distance 0.218 (0.126 - 0.323). We therefore applied landmark-based and outline-based geometric morphometric (GM) approaches to differentiate Walchia species using scutum measurements. A total of 261 scutum images of Walchia spp. were examined by landmark-based GM (140 chigger specimens) and outline-based GM (121 specimens) techniques. All Walchia spp. showed significant differences in scutum size and shape. W. minuscuta showed the smallest mean scutum size in both techniques. The largest scutum was found in W. ewingi lupella and W. ewingi ewingi by landmark-based and outline-based GM analysis, respectively. The scutum shapes of W. alpestris and W. minuscuta were clearly distinguished from the other species. Cross-validated classification scores were different depending on species and digitizing techniques and landmark-based GM showed better scores than outline-based GM. We conclude that the morphologically closely-related trombiculid mite species can be further differentiated by their scutum features alone, using GM approaches. This technique is a promising tool for the much-needed characterization studies of chiggers and needs evaluation using matched morphometric and genotyping data for other genera of trombiculids.


Asunto(s)
Vectores de Enfermedades , Larva/anatomía & histología , Trombiculidae/anatomía & histología , Trombiculidae/clasificación , Animales , Genotipo , Larva/microbiología , Orientia tsutsugamushi , Filogenia , Tifus por Ácaros/microbiología , Trombiculidae/microbiología
17.
C R Biol ; 340(1): 37-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27890576

RESUMEN

Geographic populations of the two main sandflies genera present in Thailand were studied for species and population identification. Size and shape of Phlebotomus stantoni and Sergentomyia hodgsoni from different island and mainland locations were examined by landmark-based geometric morphometrics. Intraspecific and interspecific wing comparison was carried out based on 12 anatomical landmarks. The wing centroid size of P. stantoni was generally larger than that of S. hodgsoni. Within both species, wings from the continent were significantly larger than those from island populations. Size variation could be significant between geographic locations, but could also overlap between genera. The wing venation geometry showed non-overlapping differences between two species. The within-species variation of geometric shape between different geographical locations was highly significant, but it could not interfere with the interspecies difference. The lack of species overlapping in shape, and the high discrimination between geographic populations, make geometric shape a promising character for future taxonomic and epidemiological studies.


Asunto(s)
Phlebotomus/anatomía & histología , Psychodidae/anatomía & histología , Alas de Animales/anatomía & histología , Puntos Anatómicos de Referencia , Animales , Femenino , Geografía , Procesamiento de Imagen Asistido por Computador , Insectos Vectores , Tamaño de los Órganos , Programas Informáticos , Especificidad de la Especie , Tailandia
18.
Folia Parasitol (Praha) ; 632016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27827335

RESUMEN

Adult flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), especially S. pullus Austen, 1909, S. uruma Shinonaga et Kano, 1966 and S. indicus Picard, 1908, are morphologically similar and sometimes difficult to distinguish when using external morphological characteristics. These species may act as vectors and/or potential vectors of many pathogens (virus, bacteria and protozoa). Their correct identification is important to target the vectors involved in the transmission of the pathogens and also helps in the fly control program.The aim of the present study was to distinguish three species which are difficult to separate using traditional diagnostic characters for species of Stomoxys such as colour patterns and body proportions. Modern morphometrics, both landmark and outline-based, was used to access wing geometry of S. pullus, S. uruma and S. indicus. A total of 198 and 190 wing pictures were analysed for landmark- and outline-based approaches, respectively. Wing shape was able to separate species and sexes of the three Stomoxys flies with highly significant difference of Mahalanobis distances. The cross-validated classification scores ranged from 76% to 100% for landmark and 77% to 96% for outline-based morphometrics. The geometry of wing features appears to be a very useful, low-cost tool to distinguish among the vectors S. pullus, S. uruma and S. indicus.


Asunto(s)
Entomología/métodos , Muscidae/clasificación , Animales , Entomología/normas , Muscidae/anatomía & histología , Nigeria , Reproducibilidad de los Resultados , Especificidad de la Especie
19.
Acta Trop ; 159: 1-10, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26987285

RESUMEN

Aedes aegypti (Diptera: Culicidae) (L.), Ae. albopictus (Skuse), and Ae. scutellaris (Walker) are important mosquito vectors of dengue and chikungunya viruses. They are morphologically similar and sympatric in some parts of their distribution; therefore, there is a risk of incorrect morphological identification. Any confusion could have a negative impact on epidemiological studies or control strategies. Therefore, we explored two modern tools to supplement current morphological identification: DNA barcoding and geometric morphometric analyses. Field larvae were reared to adults and carefully classified based on morphological traits. The genetic analysis was based on the 658bp each of 30COI sequences. Some Culex spp., Mansonia bonneae, were included as outgroups, and inclusion of a few other Aedes spp. facilitated phylogenetic inference of the relationship between Ae. albopictus and Ae. scutellaris. The two species were separated by an average interspecific divergence of 0.123 (0.119-0.127). Morphometric examination included landmark- (392 specimens) and outline-based (317 specimens) techniques. The shape of the wing showed different discriminating power based on sex and digitizing technique. This is the first time that Ae. scutellaris and Ae. albopictus have been compared using these two techniques. We confirm that these morphologically close species are valid, and that geometric morphometrics can considerably increase the reliability of morphological identification.


Asunto(s)
Aedes/clasificación , Aedes/genética , Fiebre Chikungunya/transmisión , Código de Barras del ADN Taxonómico , Dengue/transmisión , Vectores de Enfermedades/clasificación , Alas de Animales/anatomía & histología , Adulto , Aedes/anatomía & histología , Aedes/virología , Animales , Culex/clasificación , Culex/genética , Culex/virología , Humanos , Filogenia , Reproducibilidad de los Resultados , Tailandia
20.
Parasit Vectors ; 9: 17, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26762512

RESUMEN

BACKGROUND: The Thai-Myanmar border is a remaining hotspot for malaria transmission. Malaria transmission in this region continues year-round, with a major peak season in July-August, and a minor peak in October-November. Malaria elimination requires better knowledge of the mosquito community structure, dynamics and vectorial status to support effective vector control. METHODS: Adult Anopheles mosquitoes were collected using CDC light traps and cow bait in 7 villages along the Thai-Myanmar border in January 2011 - March 2013. Mosquitoes were determined to species by morphological characters. Plasmodium-positivity was determined by circumsporozoite protein ELISA. RESULTS: The 2986 Anopheles mosquitoes collected were assigned to 26 species, with Anopheles minimus sensu lato (s.l.) (40.32%), An. maculatus s.l. (21.43%), An. annularis s.l. (14.43%), An. kochi (5.39%), An. tessellatus (5.26%), and An. barbirostris s.l. (3.52%) being the top six most abundant species. Plasmodium-infected mosquitoes were found in 22 positive samples from 2906 pooled samples of abdomens and heads/thoraxes. Four mosquito species were found infected with Plasmodium: An. minimus s.l., An. maculatus s.l., An. annularis s.l. and An. barbirostris s.l. The infectivity rates of these mosquitoes were 0.76, 0.37, 0.72, and 1.74%, respectively. Consistent with a change in malaria epidemiology to the predominance of P. vivax in this area, 20 of the 22 infected mosquito samples were P. vivax-positive. The four potential vector species all displayed apparent seasonality in relative abundance. While An. minimus s.l. was collected through the entire year, its abundance peaked in the season immediately after the wet season. In comparison, An. maculatus s.l. numbers showed a major peak during the wet season. The two potential vector species, An. annularis s.l. and An. barbirostris s.l., both showed peak abundance during the transition from wet to dry season. Moreover, An. minimus s.l. was more abundant in indoor collections, whereas An. annularis s.l. and An. barbirostris s.l. were more abundant in outdoor collections, suggesting their potential role in outdoor malaria transmission. CONCLUSIONS: This survey confirmed the major vector status of An. minimus s.l. and An. maculatus s.l. and identified An. annularis s.l. and An. barbirostris s.l. as additional vectors with potential importance in malaria transmission after the wet season.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria/transmisión , Plasmodium/inmunología , Animales , Anopheles/clasificación , Geografía , Humanos , Insectos Vectores/clasificación , Malaria/parasitología , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Mianmar/epidemiología , Plasmodium/aislamiento & purificación , Plasmodium vivax/inmunología , Plasmodium vivax/aislamiento & purificación , Estaciones del Año , Esporozoítos , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...